
About Lab 8

The first step of Lab 8 is to implement HashMaps.
You will do a chained map, meaning that each
entry of your hash array is a list of all of the
<key, value> pairs where the key hashes to that
index of the array.

The MyHashMap<K, V> class has a number of
methods that should be easy to create and easy to
test:

int size()
boolean isEmpty()
void clear()
String toString()
V get(K key)
V put(K key, V value)
V remove(K key)
boolean containsKey(K key)
boolean containsValue(V value)

There are also two methods that might make you
think a bit:

Iterator<K> keys()
Iterator<V> values()

Finally, there is a resize() method. For this you
need to build a new hash array and rehash
everything to it.

The other part of the lab concerns Markov
models, which we'll use for language generation.
The basic idea is easy. Suppose you have a
sample of text on which we are basing our
generated text. Let's consider substrings of
length k=2. In the sample, the substring "bo" is
followed 50% of the time by the letter 'b', and
50% by 'm'. As we are generating text, if we
output the letters 'b' and 'o' (so we have the
substring "bo", we randomly choose one of the
followups 'b' and 'm', with probability 0.5.

Say we generate 'm'. Now our most recent string
of length k is "bo"+"m" = "om". Suppose every
time "om" appears in the sample it is followed by
'b'. We do the same, and so we have now
produced "bomb". This continues as long as we
wish.

There are two things to note here:
a) We aren't considering semantics at all.

There is no "meaning" to the generated
text; it is just a sequence of characters.

b) If you keep k small (such as the value 2 in
our examples), the resulting text is rather
random and meaningless. However, if you
make k fairly large, on the order of 10 or
so, the generated text will consist mostly of
real words.

People who are serious about generating
language usually start with a semantic model and
a model of sentence structure, and then use
Markov models (perhaps on words rather than
individual characters) to add some variation and
individual style to the generated sentences.

We will make a class Markov to represent each
substring of length k. The class holds the
substring and a TreeMap<Character, Integer> that
keeps track of all of the followup characters. Our
Markov model is a hashmap of all of these
Markov instances: HashMap<String, Markov>.

When we are building up our model, each time we
read a letter x we look at the previous string of
length k. We use this string to lookup the
corresponding Markov object in our HashMap. We
add x as a character following the substring in its
Markov object. We then update the substring by
dropping its first letter and adding x onto its end.

For generating text, we start with the first k letters
of our text sample. Now, suppose variable sub
holds the most recent substring of k letters. We
get the Markov object associated with sub in the
HashMap. Suppose the Markov object tells us that
sub was followed in the sample 2 times by the
letter 'a', 5 times by 'b' and 3 times by 'c' (for a
total of 10 entries). Choose a random number
between 0 and 9. If this is less than 2, choose the
letter 'a'; if it is at least 2 but less than 7 choose 'b',
and if it is 8 or greater choose c. Output this letter,
update sub (by dropping its first letter and adding
the one just chosen), and repeat.

There is one more issue. It is actually rather
awkward to use our usual Scanner to read the text
sample -- Scanner wants to read words (tokens) or
entire lines, and our algorithm wants one letter at a
time (counting end-of-line markers and other white
space as letters).

The following demo program uses class FileReader to
echo an input file one letter at a time.

import java.io.*;
public class Test {

public static void main(String[] args) {
int nextChar;
FileReader input=null;
String inputFileName = args[0];
try {

input = new FileReader(inputFileName);
} catch (FileNotFoundException e) {

System.err.println("Could not open file "+inputFileName+": "+e.getMessage());
System.exit(2);

}
try {

while (-1 != (nextChar = input.read())) {
char c = (char) nextChar;
System.out.print(c);

}
} catch (IOException e) {

System.err.println("Error reading from"+inputFileName+": "+e.getMessage());
System.exit(4);

}
}

}

If you prefer, the second try-block could also be
written

try {
boolean done = false;
while (!done) {

nextChar = input.read();
if (nextChar == -1)

done = true;
else {

char c = (char) nextChar;
System.out.print(c);

}
}

}

